Adaptive learning for complex-valued data

نویسندگان

  • Kerstin Bunte
  • Frank-Michael Schleif
  • Michael Biehl
چکیده

Abstract. In this paper we propose a variant of the Generalized Matrix Learning Vector Quantization (GMLVQ) for dissimilarity learning on complex-valued data. Complex features can be encountered in various data domains, e.g. Fourier transformed mass spectrometry or image analysis data. Current approaches deal with complex inputs by ignoring the imaginary parts or concatenating real and imaginary parts in one real valued vector. In this contribution we propose a prototype based classification method, which allows to deal with complex-valued data directly. The algorithm is tested on a benchmark data set and for leaf recognition using Zernike moments. We observe that the complex version converges much faster than the original GMLVQ evaluated on the real parts only. The complex version has fewer free parameters than using a concatenated vector and is thus computationally more efficient than original GMLVQ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex-Valued Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a nonparametric approach for measuring the relative efficiency of a decision making units consists of multiple inputs and outputs. In all standard DEA models semi positive real valued measures are assumed, while in some real cases inputs and outputs may take complex valued. The question is related to measuring efficiency in such cases. As far as we are aware, ...

متن کامل

A complex-valued nonlinear neural adaptive filter with a gradient adaptive amplitude of the activation function

A complex-valued nonlinear gradient descent (CNGD) learning algorithm for a simple finite impulse response (FIR) nonlinear neural adaptive filter with an adaptive amplitude of the complex activation function is proposed. This way the amplitude of the complex-valued analytic nonlinear activation function of a neuron in the learning algorithm is made gradient adaptive to give the complex-valued a...

متن کامل

A fully adaptive normalized nonlinear gradient descent algorithm for complex-valued nonlinear adaptive filters

A fully adaptive normalized nonlinear complex-valued gradient descent (FANNCGD) learning algorithm for training nonlinear (neural) adaptive finite impulse response (FIR) filters is derived. First, a normalized nonlinear complex-valued gradient descent (NNCGD) algorithm is introduced. For rigour, the remainder of the Taylor series expansion of the instantaneous output error in the derivation of ...

متن کامل

A Complex-Valued RTRL Algorithm for Recurrent Neural Networks

A complex-valued real-time recurrent learning (CRTRL) algorithm for the class of nonlinear adaptive filters realized as fully connected recurrent neural networks is introduced. The proposed CRTRL is derived for a general complex activation function of a neuron, which makes it suitable for nonlinear adaptive filtering of complex-valued nonlinear and nonstationary signals and complex signals with...

متن کامل

A Distributed Algorithm for Training Augmented Complex Adaptive IIR Filters

In this paper we consider the problem of decentralized (distributed) adaptive learning, where the aim of the network is to train the coefficients of a widely linear autoregressive moving average (ARMA) model by measurements collected by the nodes. Such a problem arises in many sensor network-based applications such as target tracking, fast rerouting, data reduction and data aggregation. We assu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012